Introducing Cinchona Alkaloid Appended Thiol(s) in Gold Nanocluster Chemistry

<u>Subhradip Kundu,</u>¹Daniele Rosa-Gastaldo,¹ Ariel Francis Perez Mellor,¹ Marion Pupier,² Jasmine Viger-Gravel,² Arnulf Rosspeintner,¹ Michal Swierczewski,¹ Thomas Bürgi^{*1}

 ¹ Department of Physical Chemistry, 30 Quai Ernest-Ansermet, University of Geneva, 1211 Geneva 4, Switzerland.
² Department of Organic Chemistry, 30 Quai Ernest-Ansermet, University of Geneva, 1211 Geneva 4, Switzerland.

Email: Subhradip.Kundu@unige.ch

Cinchona alkaloids represent a diverse class of naturally occurring compounds that have been extensively studied and utilized in various fields of chemistry and biochemistry over the past two centuries.^{1,2} These versatile molecules have demonstrated a wide range of applications, including their use as chiral organocatalysts, ligands, chromatographic selectors, antimalarial drugs, and NMR discriminating agents.

Our research aims to further explore the potential of cinchona alkaloid-appended thiols with varying chain lengths (n = 0, 2, 4, ...) as chiral ligands in gold nanocluster chemistry, see figure. We plan to synthesize and incorporate these ligands into nanoclusters such as $Au_{25}(PET)_{18}$ through ligand exchange reactions (LER).³ By introducing these chiral ligands, we aim to investigate their potential applications in enantioselective organocatalysis, NMR discrimination, and other related fields.⁴

In this poster presentation, we will showcase the synthesis of the alkaloid derivative and present its application as chiral ligand on atomically precise gold clusters.

L1 (n = 0, 2, 4,)

References

- [1] Przemysław J. Boratyński, *Molecular Diversity*, **2015**, 19, 385-422.
- [2] K. Kacprzak, J. Gawroński, Synlett, 2001, 7, 961-998.
- [3] Yanan Wang, Thomas Bürgi, Nanoscale Advances, 2021, 3, 2710-2727.
- [4] Davide Ferri, Thomas Bürgi, Alfons Baiker, J. Chem. Soc., Perkin Trans., 1999, 2, 1305–1311.