## Photoredox-catalyzed $\alpha$ -C-H alkylation of (poly)-hydroxylated substrates mediated by $CO_2$

<u>Jérémy Merad</u>,<sup>a</sup>\* Gaétan Archer,<sup>a</sup> Quentin Ordan,<sup>a</sup> Kunlong Song,<sup>a</sup> Ricardo Meyrelles,<sup>b,c</sup> Boris Maryasin,<sup>b,c</sup> Maurice Médebielle<sup>a</sup>

<sup>a</sup>Universite Claude Bernard Lyon 1, CNRS, INSA, CPE Lyon, ICBMS UMR 5246, Villeurbanne, F-60100 <sup>b</sup>Institute of Theoretical Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna (Austria) <sup>c</sup>Institute of Organic Chemistry, University of Vienna Währinger Straße 38, 1090 Vienna (Austria) jeremy.merad@univ-lyon1.fr

Carbon dioxide (CO<sub>2</sub>) is an overproduced, inexpensive and non-toxic gas which can reversibly bind chemical functions with sufficient Lewis basicity. Consequently, it can be used to modify temporarily the reactivity of the corresponding molecules.<sup>[1]</sup> For instance, CO<sub>2</sub>-promoted photoredox processes have been developed to achieve the  $\alpha$ -C-H alkylation of aliphatic amines.<sup>[2]</sup> Our investigations in this area focuses on using CO<sub>2</sub> to transiently modulate the reactivity of hydroxylated molecules in order to develop original photoredox-catalyzed transformations. Recently, we have demonstrated that the catalytic and reversible carbonation of aliphatic polyols under CO<sub>2</sub> atmosphere constitutes a unique strategy to perform the  $\alpha$ -C-H monoalkylation of these abundant feedstocks by photocatalytic hydrogen atom transfer (HAT).<sup>[3]</sup> Experimental and theoretical mechanistic studies have demonstrated an activation resulting from an intramolecular hydrogen bonding between the carbonate and the remaining alcohol.

In the meantime, we have discovered that CO<sub>2</sub> could be used to slow down keto-enol tautomerism in complex radical cascades.<sup>[4]</sup> This observation was applied to the design of an unprecedented cascade triggered by photocatalytic HAT and allowing the conversion of cyclopropyl methanol derivatives into elaborate building blocks in one step.



- [1] P. K. Sahoo, Y. Zhang, S. Das, ACS Catal. 2021, 11, 3414.
- [2] a) J. Ye, I. Kalvet, F. Schoenebeck, T. Rovis, *Nat. Chem.* 2018, 10, 1037; b) Y. Qin, R. Cauwenbergh, S. Pradhan, R. Maiti, P. Franck, S. Das, *Nat. Commun.* 2023, 14, 7604.
- [3] G. Archer, R. Meyrelles, I. Eder, N. Kovács, Boris Maryasin, M. Médebielle, J. Merad, *Angew. Chem. Int. Ed.* **2024**, *63*, e202315329.
- [4] K. Song, Q. Ordan, M. Médebielle, J. Merad, manuscript in preparation.